Fun Problems Geometry Research Honors

PROBLEMS

- 1. In quadrilateral ABCD, $\overline{AB} \perp \overline{BC}$, diagonal $\overline{AC} \perp \overline{CD}$, AB = 9, $BC = 3\sqrt{7}$, and CD = 5. Compute AD.
- 2. Line segments \overline{PQ} , \overline{PR} , and \overline{PS} are three edges of a cube. If PQ=2 and the area of ΔQRS is expressed in simplest form as $p\sqrt{q}$, compute p+q.
- 3. The coordinates of the vertices of quadrilateral ABCD are A(-3, 6), B(5, 8), C(1, -6), and D(-7, -4). If the consecutive midpoints of the sides of quadrilateral ABCD are joined to form a new quadrilateral, find the area of the new quadrilateral.
- 4. Quadrilateral WXYZ is a square whose side has a length of three. If square ABCD is inscribed in triangle XYZ with AD on XZ, B on XY, and C on ZY, find the area of square ABCD.
- 5. In equilateral triangle ABC with AB = 8, points P and Q are chosen on side \overline{AB} so that AP = BQ = 2. Similarly, points R and S are chosen on side \overline{BC} so that BR = CS = 2, and points T and U are chosen on side \overline{CA} so that CT = AU = 2. If the area of hexagon PQRSTU = H, find H^2 .

SOLUTIONS

1.

Use the Pythagorean Theorem in $\triangle ABC$ to conclude that AC = 12, then use it again in $\triangle ACD$ to find that AD = 13.

- 2. Since each of \overline{PQ} , \overline{PR} , and \overline{PS} is a diagonal of a face of the cube, ΔQRS is equilateral. In isosceles right ΔPQR , $QR = 2\sqrt{2}$, so the area of ΔQRS is $\frac{s^2\sqrt{3}}{4} = \frac{(2\sqrt{2})^2\sqrt{3}}{4} = 2\sqrt{3}$ and the required sum is 5.
- 3. 2. **48**. The coordinates of the midpoints are (1,7), (3,1), (-3,-5), and (-5,1). When consecutive midpoints of any quadrilateral are joined, the resulting quadrilateral is always a parallelogram. Notice that the diagonal of this parallelogram joining (-5,1) and (3,1) is a horizontal line. The area of the two congruent triangles above and below th diagonal can be calculated easily: 2[(1/2)(8)(6)] = 48.
- 4. **2.** Let AB = x. Then, AB = XA = DZ = x and $ZX = 3x = 3\sqrt{2}$ So, the area of square $ABCD = (\sqrt{2})^2 = 2$.
- Triangles APU, BQR, and CST are equilateral, and the area of each of them is 1/16 that of $\triangle ABC$. Thus, H is 13/16 the area of $\triangle ABC$. Use the formula $K = (s^2 \sqrt{3})/4$ to find that the area of $\triangle ABC$ is $16\sqrt{3}$. Then $H = 13\sqrt{3}$, so $H^2 = 507$.

 Alternate solution: Draw \overline{RU} . Using $30^\circ 60^\circ 90^\circ$ triangles, we can calculate the height of trapezoid URQP to be $\sqrt{3}$ and the height of trapezoid TSRU to be $2\sqrt{3}$. The required area is the sum of the areas of the trapezoids: $\frac{1}{3} \cdot (4+6) \cdot \sqrt{3} + \frac{1}{3} \cdot (2+6) \cdot 2\sqrt{3} = 13\sqrt{3}$.

